Red-Ox Reaction Assignment CHM 1046 Professor Fowler

1. Balance the following reaction in *acidic* solution using half-cells. Use H^{+1} and not OH^{-1} . $Zn_{(s)} + H_2SO_{4(aq)} \rightarrow Zn^{+2}{}_{(aq)} + H_2S_{(g)}$

Balanced Ox Half-Cell:

Balanced Red Half-Cell:

Balanced Overall Cell:

2. Balance the following reaction in *acidic* solution using half-cells. Then, determine the cell potential using <u>Appendix L</u> or <u>Table 17.1</u>. $I^{-1}_{(aq)} + Cr_2O_7^{-2}_{(aq)} \rightarrow Cr^{+3}_{(aq)} + I_{2(s)}$

Balanced Ox Half-Cell:

Balanced Red Half-Cell:

Balanced Overall Cell:

Cell Potential Equation:

3. Balance the following reaction in *acidic* solution using half-cells. Fe⁺³_(aq) + H₂S_(g) \rightarrow Fe⁺²_(aq) + S_(s)

Balanced Ox Half-Cell:

Balanced Red Half-Cell:

Balanced Overall Cell:

4. Balance the following reaction in *basic* solution using half-cells. Use OH^{-1} and not H^{+1} in half-cells. $Cr^{+3}_{(aq)} + MnO_{2(s)} \rightarrow Mn^{2+}_{(aq)} + CrO_{4}^{-2}_{(aq)}$

Balanced Ox Half-Cell:

Balanced Red Half-Cell:

Balanced Overall Cell:

5. Balance the following reaction in *basic* solution. Use OH^{-1} and not H^{+1} in half-cells. Then, determine the cell potential using <u>Appendix L</u> or <u>Table 17.1</u>. $Fe^{+2}_{(aq)} + ClO^{-1}_{(aq)} \rightarrow Fe^{+3}_{(aq)} + Cl^{-1}_{(aq)}$

Balanced Ox Half-Cell:

Balanced Red Half-Cell:

Balanced Overall Cell:

Cell Potential Equation:

6. Balance the following reaction in *basic* solution. Use OH^{-1} and not H^{+1} in half-cells. (Note: BrO^{-1} half-cell is similar to reverse of ClO^{-1} half-cell above.) $O_{3(g)} + Br^{-1}_{(aq)} \rightarrow O_{2(g)} + BrO^{-1}_{(aq)}$

Balanced Ox Half-Cell:

Balanced Red Half-Cell:

Balanced Overall Cell: